Ref: https://chatgpt.com/share/691ebb05-6d48-8004-ad22-2736e17a6be3
D_orderFor U.S. food delivery (all platforms), the median delivery distance ≈ 2.5 miles.
Simulator defaults:
D_order_median ≈ 2.5 miD_order_mean ≈ 2.5–3.0 mi (with a long-tail including 4–5+ mi orders)T_delivery (All Platforms)Intouch Insight tested 600 orders in the U.S. (200 per app): ([foodondemand.com][2])
T_delivery_all ≈ 33.4 minT_delivery_DD ≈ 26.4 minT_delivery_UE ≈ 38.1 minApproximate orders/hour:
≈ 2.27 orders/hour≈ 1.58 orders/hour≈ 1.8 orders/hour
(Includes restaurant wait, parking, walking, etc.)d_hd_h ≈ 2.5 mi is a natural baseline. ([investors.serverobotics.com][1])Simulator example:
d_h ~ N(μ=2.5 mi, σ≈1.0 mi) with tail orders >5 miT_h_total26.4 min ([foodondemand.com][2])38.1 min ([foodondemand.com][2])33.4 minSimulator baseline example:
T_h_total_DD_mean = 26.5 minT_h_total_UE_mean = 38.0 min±8–10 min to model restaurant delays & peak hoursGridwise U.S. aggregation (2023Q1–2024Q2): ([Gridwise][3])
DoorDash
pay_h_task_DD ≈ $8.49≈ $18.93/hUber Eats
pay_h_task_UE ≈ $10.00≈ $24.68/hSimulator baseline (platform payout):
≈ 8.5 USD/order≈ 10.0 USD/order
(Tips are customer→driver, not a platform expense)Simulator:
c_vehicle_per_mile = 0.70 USD/mileExample vehicle cost per order:
d_h_total ≈ 3.0 mi:
C_vehicle_order = 0.70×3.0 ≈ 2.1 USDp_accident_hSentiance/industry estimate: ~1 accident per 143,000 deliveries. ([Food Delivery Apparel][5])
p_accident_h_per_order ≈ 7.0 × 10⁻⁶U.S. averages:
Liability claim averages:
≈ $6,551≈ $26,501 ([III][8])Simulator simplification:
C_accident_minor ≈ 5,000 USDC_accident_avg ≈ 20k–30k USDExpected accident cost per order:
E[C_accident_prop] ≈ 0.046 USD/orderE[C_accident_full] ≈ 0.23 USD/orderPractical simulator setting:
0.05–0.20 USD/order as tunable expected accident-cost parameter.
Based on Intouch Insight: DoorDash is faster (26.4 min) than Uber Eats (38.1 min). ([foodondemand.com][2])
Informal industry norms:
Simulator example:
L_h > 10 min → C_late_h ≈ $2L_h > 30 min → $5L_h > 60 min → $10DoorDash Peak Pay:
+$1–$4/order, occasionally +$7.50. ([foodondemand.com][2])
Uber Eats Surge/Boost: Multipliers (1.3×, 1.5×) or flat fees (+2–5 USD).
Simulator:
{0, 1, 2, 3, 4, 7.5} USD1.0–2.0 or flat 2–5 USDTypical small sidewalk robot (Berkeley CMR): ([California Management Review][9])
≈ 4 mph3–4 mph≈ 2,500–5,000 USDSimulator:
v_r_sidewalk = 3.5 mphC_robot_unit_generic = 4,000 USD≈ 6 km/h (3.7 mph) ([California Management Review][9])≈ 18 hours≈ 40 km/day ([TechCrunch][10])≈ 20 lb ([Wikipedia][11])Simulator:
H_r_max_per_day_Starship = 18 hrange_r_per_day_Starship = 40 km12–15 orders/dayStarship estimated unit cost:
≈ 5,500 USD≈ 2,250 USD ([Accio][12])Autonomy ≈ 99% ([starship.xyz][13])
Simulator:
C_robot_unit_Starship ≈ 3,000–5,500 USDautonomy_ratio_Starship ≈ 0.99p_intervention_r_Starship ≈ 0.01Serve-DoorDash sample:
Simulator:
d_r_Serve ≈ 1.3 miT_r_total_Serve ≈ 18 minv_r_cruise_Serve ≈ 5–8 mph2024Q2 operational data:
Gen3 improvements:
Simulator:
H_r_max/day ≈ 8 h≈ 14 hInvestor presentation:
Simulator:
C_total_r_Serve_target ≈ 1.0 USD/orderServe reports operational efficiency ~99.8% (vs human ~98%). ([Barron’s][17])
Simulator:
p_failure_r_Serve ≈ 0.002p_failure_h ≈ 0.02≈ 25 mph (R3 → 45 mph) ([SlashGear][18])≈ 31 kWh, city range tens to >100 kmSimulator:
v_r_road_cruise ≈ 20 mphrange_r_road ≈ 100–150 km/dayC_robot_unit_road ≳ 50,000 USD (treated as a scenario parameter)C_total≈ 8.5–10 USD ([Gridwise][3])≈ 2.1 USD (3 mi × $0.70) ([IRS][4])≈ 0.05–0.20 USD/order ([Food Delivery Apparel][5])Baseline:
C_total_h_DD ≈ 8.5 + 2.1 + 0.1 = 10.7 USD/order
C_total_h_UE ≈ 10.0 + 2.1 + 0.1 = 12.2 USD/order
≈ 1.0 USD/order ([investors.serverobotics.com][1])Starship estimation:
≈ 0.3–0.8 USD/order≈ 0.01–0.03 USD/order ([TechCrunch][10])Baseline:
C_total_r_Starship ≈ 1.5–2.0 USD/order
C_total_r_Serve ≈ 1.0–2.0 USD/order (target: 1.0)
≈ 2.27 orders/h ([foodondemand.com][2])≈ 1.58 orders/h≈ 12–18 orders/day≈ 12–15 orders/day ([TechCrunch][10])≈ 8h/day≈ 14h/day ([Restaurant Dive][15])Using this style — listing (DoorDash: X, Uber Eats: Y, Starship: Z, Serve: W) next to each variable — allows consistent comparison across scenarios:
If you want, I can also produce:
All original references remain unchanged:
[1] https://investors.serverobotics.com/static-files/0138a856-bd69-4564-9f8d-0534f9cebb73 [2] https://foodondemand.com/09262024/doordash-tops-intouch-insight-report-on-delivery-performance/ [3] https://gridwise.io/blog/delivery/uber-eats-vs-doordash-pay-how-much-are-drivers-earning/ [4] https://www.irs.gov/tax-professionals/standard-mileage-rates [5] https://fooddeliveryapparel.com/blogs/news/the-hidden-dangers-when-youre-on-the-road-the-reality-of-being-a-food-delivery-driver [6] https://about.doordash.com/en-us/news/how-were-making-dashing-even-safer [7] https://www.repairerdrivennews.com/2024/12/20/ccc-top-2024-trends-perfect-storm-of-softening-economy-increasing-repair-costs-and-aging-vehicle-pool/ [8] https://www.iii.org/fact-statistic/facts-statistics-auto-insurance [9] https://cmr.berkeley.edu/2022/04/self-driving-robots-a-revolution-in-the-local-delivery/ [10] https://techcrunch.com/2022/01/25/starship-technologies-picks-up-e50m-from-the-eus-investment-arm-to-expand-its-fleet-of-autonomous-delivery-robots/ [11] https://en.wikipedia.org/wiki/Starship_Technologies [12] https://www.accio.com/plp/wheeled-delivery-robots [13] https://www.starship.xyz/ [14] https://www.investors.com/news/technology/serve-robotics-doordash-partnership/ [15] https://www.restaurantdive.com/news/serve-robotics-debuts-los-angeles-faster-larger-robots-uber-eats-deal/729973/ [16] https://www.quiverquant.com/news/Serve%2BRobotics%2BSecures%2BTop%2BSpot%2Bin%2BFast%2BCompany%27s%2B%22Next%2BBig%2BThings%2Bin%2BTech%22%2Bfor%2BThird-Generation%2BAutonomous%2BDelivery%2BRobot [17] https://www.barrons.com/articles/serve-ai-robot-uber-stock-results-beb6ba3d [18] https://www.slashgear.com/nuro-r2-self-driving-delivery-pod-hits-us-autonomous-vehicle-milestone-06608901/